
APPM 2350 EXAM 2 SOLUTIONS A Spring when you were in high-school

INSTRUCTIONS: Electronic devices, notes, books, and crib sheets are not permitted. Write your (1)
name, (2) instructor’s name, and (3) lecture number on the front of your bluebook. Work all problems.
Show your work clearly. Note that a correct answer with incorrect, or insufficient supporting work may
receive no credit, while an incorrect answer with relevant work may receive partial credit. Help your graders
help you!

1. (25 points) Around Itsa Lake the elevation, h, of the solid ground (measured in feet) can be described

by the function h(x, y) = 9000− 20x2y2 + 40x2 + 40y2.

(a) Determine the x, y, and h coordinates corresponding to the location of the bottom of Itsa Lake.

SOLUTION: We first calculate hx = x(−40y2 + 80) and hy = y(−40x2 + 80). There are

no locations for which hx and/or hy are undefined. We then look for critical points (CPs)

associated with hx = 0 and hy = 0 (simultaneously). This leads to the following five CPs,

P0(0, 0), P1(
√

2,
√

2), P2(−
√

2,
√

2), P3(−
√

2,−
√

2), and P4(
√

2,−
√

2).

We now need to classify the CPs. First, hxx = −40y2+80, hyy = −40x2+80, and hxy = −80xy.

Hence the discriminant is

D = hxxhyy − h2xy = (−40y2 + 80)(−40x2 + 80)− (−80xy)2 .

We can now evaluate D at each of the CPs to get D|P0 = 802 > 0, however D evaluated at

points P1 through P4 have the common value D = −(160)2 < 0. We conclude that P1 through

P4 are all “saddle points.” At P0 we need to further examine the sign on either fxx or fyy (either

one will do). Since fxx|P0 = 80 > 0, we conclude that P0 corresponds to a minimum.

Now, if we evaluate h at all of our CPs we get h|P0 = 9000 while h at all of the saddle points

have the common value h = 9080.

(b) Determine the x, y, and h coordinates of any possible location(s) from which Itsa Lake might

drain.

SOLUTION: Possible drainage locations would be our saddle points, P1 through P4. Evaluating

h at each saddle point, we find f = 9080.

(c) What is the maximum possible depth of Itsa Lake? If is not possible to determine this from the

given information, clearly state “Cannot be determined.”

SOLUTION: The “bottom” of the lake has elevation h = 9000 while of the drainage locations

have the common elevation h = 9080. Hence, the maximum lake depth is 80 feet.



2. (25 Points) Consider a circle of radius R centered on the origin. You need to determine the coordinates

of the points on the circle closest and farthest to a point outside the circle located at P0(α, β). You

may assume that P0 is in the first quadrant. Clearly, one could construct a line from P0 to the

center, and then move a distance R along the line in either direction from the center. But, of course,

this is not how we want you to solve the problem. As a Calculus III student, you need to impress

your graders by doing this calculation using Calculus III concepts. The higher the concept level, the

higher your possible grade. Of course you will also justify and explain your reasoning as you progress

through this problem. Right?

SOLUTION: The objective function is f(x, y) = (x − α)2 + (y − β)2, which represents the distance

squared. The constraint is the g(s, h) = x2 + y2 = R2, which means the solution location (x, y) must

be on the circle. Using ∇f = λ(∇g) we get

2(x− α) i + 2(y − β) j = λ(2x i + 4y j)

Setting the i and j components equal, and accounting for the constraint, we get the three coupled

algebraic equations

x− α = λx , (1)

y − β = λy , (2)

x2 + y2 = R2 . (3)

Note that x = 0 cannot be a solution for x since it will not satisfy equation (1). Similar reasoning

indicates that y = 0 cannot be a solution. Now, equating λ from (1) and (2) shows that

λ =
x− α
x

=
y − β
y

,

from which it follows that y = βx/α. Using y = βx/α in (3) easily leads to x =
±αR√
α2 + β2

. Now,

for each of these x values, we can use y = βx/α to calculate the corresponding y value. Finally we

get the two points P1

(
αR√
α2 + β2

,
βR√
α2 + β2

)
and P2

(
−αR√
α2 + β2

,
−βR√
α2 + β2

)
. Finally, one needs

to give some sort of justification for which point is closet and farthest to point P0. If you had lots of

extra time, and you really, really like algebra, you could evaluate the objective function f at P1 and

P2 to find that P1 is closest to P0. You could have drawn a clear sketch. Or, you could have based

your argument on the fact that P0 and P1 are both in the first quadrant, while P2 is in the third

quadrant. How ever you justified it, P1 is closest to P0.



3. (25 Points) Consider the function F (u, v), where u and v are functions of x and y specifically, u(x, y)

and v(x, y) respectively. For a particular set of F , x, y, u, and v values, Fu = 1, Fv = β, ux = α,

uy = 2, vx = 2, vy = 3, where α and β are real constants. Reread all of this to make sure you’ve got

it all straight. Maybe one or two more times, just to make sure.

F (u, v)

u(x, y) v(x, y)

x y

(a) Suppose you are now told that for the above conditions, dF = 7 dx+ 8 dy. If x changes by the

small amount 0.01 and y changes by the small amount −0.02, estimate the change in the value

of F .

SOLUTION: ∆F ≈ 7 ∆x+ 8 ∆y = 7(0.01) + 8(−0.02) = −0.09

(b) If dF = 7 dx+ 8 dy still holds, then determine the values of α and β.

SOLUTION: Since we know that Fx = 7 = Fuux +Fvvx = 1α+2β and Fy = 8 = Fuuy +Fvvy =

1(2) + β3 we can solve for α = 3 and β = 2.

(c) When x changes by the small amount 0.01, and y changes by the small amount −0.02, estimate

the change in the value of u.

SOLUTION: ∆u ≈ ux∆x+ uy∆y = 3(0.01) + 2(−0.02) = −0.01.

(d) When x changes by the small amount 0.01, and y changes by the small amount −0.02, estimate

the change in the value of v.

SOLUTION: ∆v ≈ vx∆x+ vy∆y = 2(0.01) + 3(−0.02) = −0.04.

(e) Ultimately thinking of F as a function of x and y, and if possible, determine ∇F = Fx i+Fy j for

the conditions described in the previous parts of the problem. Otherwise clearly state “Cannot

be determined.”

SOLUTION: From parts a) and b), we see that Fx = 7 and Fy = 8, so then ∇F = 7 i + 8 j for

the stated conditions.



4. (25 Points) Consider the function f(x, y) = exp(x + y). Warning: carefully read all the numeric

values in this question, then read them again.

(a) Calculate the second order Taylor approximation to f(x, y) near the point (2, 1).

SOLUTION: Using up to and including the second-order terms in the T.S. we get

f(x, y) ≈ f(x0, y0) +
[

(x− x0)fx(x0, y0) + (y − y0)fy(x0, y0)
]

+
1

2!

[
(x− x0)2fxx(x0, y0) + 2(x− x0)(y − y0)fxy(x0, y0) + (y − y0)2fyy(x0, y0)

]
Noting that the function and all of its partial derivatives are equal to exp(x+ y), we can write

the approximation as

f(x, y) ≈ exp(x0 + y0)
(
1 +

[
(x− x0) + (y − y0)

]
+

1

2!

[
(x− x0)2 + 2(x− x0)(y − y0) + (y − y0)2

])
= exp(x0 + y0)

(
1 +

[
(x− x0) + (y − y0)

]
+

1

2!

[
(x− x0) + (y − y0)

]2)

Now, since x0 = 2 and y0 = 1, we have

f(x, y) ≈ e3
(

1 + [(x− 2) + (y − 1)] +
1

2!

[
(x− 2) + (y − 1)

)2 )
(b) Use your result from part (a) to estimate the value of f(2.2, 1.1). Do not simplify your answer

here. For example, you can leave your answer in the form 8 + 4(3.1− 3) + 3(4.01− 4), although

we really do not recommend using these numbers.

SOLUTION: Setting x = 2.2 and y = 1.1 we get

f(2.2, 1, 1) ≈ e3
(
1 + [0.2 + 0.1] + [0.2 + 0.1]2

)
(c) Calculate an “upper bound on the error” associated with your second order approximation as-

suming that you only use values of x and y such that |x− 2| ≤ 0.2 and |y − 1| ≤ 0.1. Please

simplify your answer, but don’t try to convert to decimal form.

SOLUTION: We need to determine max{ |fxxx|, |fxxy|, |fxyy|, |fyyy|} ≤M , in the region bounded

by |x− 2| ≤ 0.2 and |y − 1| ≤ 0.1. But since all derivatives are exp(x + y), we can use

M = e2.2+1.1 = e3.3. Then an upper bound on the error would be

|error| <=
e3.3

3!
[ |2.2− 2|+ |1.1− 1| ]3 =

e3.3

3!
[0.3]3

.

(d) Now suppose you actually worked out the fifth order Taylor approximation to f(x, y) near the

point (3, 2). (You don’t actually need to work out this approximation! Also note the change in

the center location from (2, 1) to (3, 2).) Calculate an “upper bound on the error” associated

with this fifth order approximation assuming that you only use values of x and y such that

|x− 3| ≤ 0.1 and |y − 2| ≤ 0.1. Please simplify your answer, but don’t try to convert to decimal

form.

SOLUTION: The line of reasoning is similar to part c), except the error is now based on the

maximum magnitude of all possible sixth order derivatives in the region bounded by |x− 3| ≤ 0.1

and |y − 2| ≤ 0.1. This would now lead to M = e3.1+2.1 = e5.2. Then an upper bound on the

error would be

|error| <=
e5.2

6!
[ |3.1− 3|+ |2.1− 2| ]6 =

e5.2

6!
[0.2]6

.



Projections and distances

projAB =
(
A ·B
A ·A

)
A d =

|−→PS × v|
|v| d =

∣∣∣∣−→PS · n

|n|

∣∣∣∣
Arc length, frenet formulas, and tangential and normal acceleration components

ds = |v| dt T =
dr

ds
=

v

|v| N =
dT/ds

|dT/ds| =
dT/dt

|dT/dt| B = T×N

dT

ds
= κN

dB

ds
= −τN κ =

∣∣∣dT
ds

∣∣∣ = |v × a|
|v|3 =

|f ′′(x)|
| 1 + (f ′(x))2 |3/2

=
|ẋÿ − ẏẍ|
|ẋ2 + ẏ2|3/2

τ = −dB
ds
·N

a = aNN+ aTT aT =
d|v|
dt

aN = κ|v|2 =
√
|a|2 − a2T

Directional derivative, discriminant, and Lagrange multipliers

df

ds
= (∇f) · u fxxfyy − (fxy)

2 ∇f = λ∇g, g = 0

Taylor’s formula (at the point (x0, y0))

f(x, y) = f(x0, y0) +
[
(x− x0)fx(x0, y0) + (y − y0)fy(x0, y0)

]
+

1

2!

[
(x− x0)2fxx(x0, y0) + 2(x− x0)(y − y0)fxy(x0, y0) + (y − y0)2fyy(x0, y0)

]
+

1

3!

[
(x− x0)3fxxx(x0, y0) + 3(x− x0)2(y − y0)fxxy(x0, y0)

+ 3(x− x0)(y − y0)2fxyy(x0, y0) + (y − y0)3fyyy(x0, y0)
]
+ · · ·

Linear approximation error

|E(x, y)| ≤ M

2
(|x− x0|+ |y − y0|)2, where max{ |fxx|, |fxy|, |fyy| } ≤M


